The leading blog on nanocellulose

Anni Karppinen

Anni has worked with MFC since 2008, first at the Aalto University and the last two years at Borregaard as a research scientist. In her current work, she concentrates on the analysis of MFC and different technical applications. Her main interest lies in the flow properties and rheology of MFC. Anni has a doctoral degree in Polymer Technology.

Recent Posts

What makes microfibrillated cellulose a good oxygen barrier

By Anni Karppinen 4. April 2017

Microfibrillated cellulose (MFC) has shown great potential as an oxygen barrier in packaging. This has led to numerous research projects trying to utilize the potential in practice. But how does MFC actually create the barrier towards oxygen?

Read more
1 Comment

Temaer: Barrier properties

What kind of rheological properties are needed in oilfield applications?

By Anni Karppinen 14. March 2017

Oil recovery with all different operations is a fascinating field for a rheologist since so versatile rheological properties are required in the processes. Microfibrillated cellulose has been recognized as potential green, safe rheology modifier for the oil recovery industry. Why is that?

Read more
0 Comments

Temaer: rheology, oilfield

Having trouble of producing stable foams?

By Anni Karppinen 28. February 2017

Making foams, in other words introducing gas in a solid or liquid, is needed in industries like construction, composites, home care and personal care. Solid foam is a clever way to produce lightweight structures and insulation materials, whereas many personal care and detergent formulations are required to form a liquid foam. To produce solid foams, you need a blowing agent which introduces gas bubbles in the solid and a solid (often a polymer) that hardens around them. Liquid foams are mainly created by using surfactants and mixing air in. Earlier on this blog, we have explained how microfibrillated cellulose can be used for creating bubble-free gel coats. Could it also help forming intentional foam structures?

 
Read more
2 Comments

Temaer: MFC, rheology

Why is microfibrillated cellulose translucent and not transparent?

By Anni Karppinen 24. January 2017

From time to time I get comments from people interested in microfibrillated cellulose (MFC) that they cannot dissolve the product, and the formulation remains hazy no matter how much they mix. Alternatively, they ask how low the concentration needs to be to get a transparent formulation. The answer to these questions is that microfibrillated cellulose does not dissolve in water (or in common solvents) which means that it does not make a transparent solution, no matter how much it is mixed or how low concentration is used. There is no need to worry, however; the non-dissolved fibers are the key factor to the interesting behavior of MFC. Let’s look at the translucency of MFC in more detail.

Read more
2 Comments

Temaer: MFC

How to make PESTICIDES more effective?

By Anni Karppinen 6. December 2016

Effective pest control is an essential part of modern food production. Different pesticide products, like herbicides, fungicides, and insecticides, are used to ensure healthy growth of the crop and efficient land use. In addition to the active ingredient in the pesticide, auxiliary components can be added to the pesticide formulation or separately to the spray tank. These auxiliary elements are also called adjuvants, and they are used to ensure the effect of pesticides in different environmental conditions. Typically adjuvants can improve the biological activity of the herbicides by, for instance, reducing spray drift, increasing the wetting of the plant surface or enhancing the uptake of the herbicide into the plant leaves. Let me present two cases where microfibrillated cellulose (MFC) can help to improve the performance of pesticides.

Read more
1 Comment

Temaer: MFC

How to characterize microfibrillated cellulose reliably?

By Anni Karppinen 25. October 2016

Developing a new kind of material is fascinating work and requires many innovations before the product is available for the market. One important part of the development work is to find analysis methods t for characterizing the quality. Those methods should ideally describe the material well but also be reproducible and reliable. Often this is ensured by using standard methods, but for new materials, like microfibrillated cellulose (MFC), they do not exist yet. Even though some work has been initiated by Canadian Standards Association (Z5100-14 Cellulosic nanomaterials – Test methods for characterization) and TAPPI, there are no proper guidelines for analysis of MFC yet. As a guidance to those unfamiliar with microfibrillated cellulose, I will share my tips for a reliable, reproducible analysis of MFC.

Read more
0 Comments

Temaer: MFC

How to use MFC in cosmetic products? Interview with Cosmacon & Rainer Kröpke

By Anni Karppinen 11. October 2016

Cosmetic products are one of the most exciting application areas for microfibrillated cellulose (MFC). The opportunities within this field are almost endless as Mr. Rainer Kröpke from Cosmacon GmbH has learned when working with MFC in cosmetic applications. Mr. Kröpke has a long experience in formulating cosmetic products first at Beiersdorf (Germany) and since 2012 as a consultant. Read below his interview where he shares his experiences with all our blog readers.

Read more
1 Comment

Temaer: Cosmetics

Applications for strong, light-weight MFC films

By Anni Karppinen 27. September 2016

Have you ever tried to make a film from microfibrillated cellulose (MFC)? If you have, you know that it has a good film-forming ability, and the film is strong and light. In addition, the films are opaque, translucent or even transparent depending on the thickness of the film and type of MFC. They also show good oxygen barrier properties. Moreover, MFC can be combined with different polymers or fillers to obtain even more versatile material. In this week’s post, I want to show the potential of MFC films in various applications. Let’s start by discussing how MFC films can be made and then see what kind of applications these films may have.

Read more
0 Comments

Temaer: MFC

Important rheological properties of microfibrillated cellulose

By Anni Karppinen 9. August 2016

In this blog post, I will try to give you some insights into a topic I find a fascinating one related to microfibrillated cellulose (MFC): Rheology of MFC suspensions. Rheology is the study of deformation and flow of material under stress, for example how easily material changes its form when it is pressed, or how easy it is to pump liquid in the pipes.

The rheological properties of MFC are so versatile that you always discover something new when you study it. This time, I will discuss two important rheological properties of MFC: Viscosity, together with shear thinning, and yield stress.

Read more
1 Comment

Temaer: MFC

Microfibrillated cellulose or nanocellulose?

By Anni Karppinen 19. July 2016

Is microfibrillated cellulose (MFC) same as nanocellulose? What is the difference between micro- and nanofibrillated cellulose? What about cellulose nanocrystals and microfibrillated cellulose? Starting to read about MFC (or nanocellulose) might be confusing since the terms used for cellulosic nano- and micro-sized materials are versatile. Moreover, they are not totally established, so the same material can have different names or the same terms can be used for very different kind of materials. In this post, I will introduce the most common terms and distinguish synonyms from different materials.

Read more
0 Comments

Temaer: MFC

A blog from Borregaard

Exilva is Borregaard’s innovative new additive within the field of Microfibrillar / Microfibrillated cellulose (MFC). Exilva is a completely natural and infinitely sustainable performance enhancer that improves rheology and stability in product formulations.


Visit www.exilva.com